13,896 research outputs found

    Tunneling driven tilt modes of the O octahedra in La{2-x}Sr{x}CuO{4}: strong dependence on doping

    Full text link
    The anelastic spectrum of La{2-x}Sr{x}CuO{4} (x = 0, 0.008, 0.019, 0.032) has been measured down to 1.5 K, in order to see the effect of doping on the intrinsic lattice fluctuations already found in stoichiometric La{2}CuO{4}, and identified with tunneling driven tilt modes of the O octahedra. Slight doping with Sr causes a drastic increase of the transition rates and relaxation strength of the tunneling systems. The influence of doping on the relaxation rate is interpreted in terms of direct coupling between between the tilts of the octahedra and the hole excitations. However, the observed fast dependence of the rate on temperature cannot be explained in terms of the ususal models of coupling between a tunneling system and the conduction electrons.Comment: LaTeX, 5 figures in a single PostScript file, submitted to Phys. Rev.

    Acoustic measurement of the low-energy excitations in Nd2-xCexCuO4

    Full text link
    The complex dynamic Young's modulus of ceramic Nd2-xCexCuO4 with x = 0, 0.05 and 0.20 has been measured from 1.5 to 100 K at frequencies of 1-10 kHz. In the undoped sample the modulus starts decreasing below ~20 K, instead of approaching a constant value as in a normal solid. The modulus minimum has been interpreted in terms of paraelastic contribution from the relaxation of the Nd^3+ 4f electrons between the levels of the ground state doublet, which is split by the interaction with the antiferromagnetically ordered Cu sublattice. The value of the splitting is found to be 0.34 meV, in excellent agreement with inelastic neutron scattering, infrared and specific heat experiments. With doping, the anomaly shifts to lower temperature and decreases in amplitude, consistently with a reduction of the local field from the Cu sublattice.Comment: 5 pages, 2 figures, submitted to Eur. Phys. J.

    Anelastic relaxation process of polaronic origin in La{2-x}Sr{x}CuO{4}: interaction between the charge stripes and pinning centers

    Full text link
    The evolution of an anelastic relaxation process occurring around 80 K in La{2-x}Sr{x}CuO{4} at a measuring frequency of ~1 kHz has been followed from x = 0.0075 to the overdoped region, x = 0.2, where it disappears. The dependence of the peak intensity on doping is consistent with a polaronic mechanism, identified with the disordered charge stripes overcoming pinning centers. A marked decrease of the peak amplitude occurs at x > 0.045, the same doping range where a change of the stripe order from parallel to diagonal with respect to the Cu-O bonds has been observed by neutron diffraction. Both the energy barrier and peak amplitude also exhibit a rise near x = 1/8.Comment: 5 pages, 4 figure

    Fractional Branes and N=1 Gauge Theories

    Full text link
    We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the bifundamental. In particular, when only one type of brane is present, one obtains pure N=1 Yang-Mills. We study the coupling of the branes to the bulk fields and present the corresponding supergravity solution, valid at large distances. By using a probe analysis, we are able to obtain the Wilsonian beta-function for those gauge theories that possess some chiral multiplet. Although, due to the lack of moduli, the probe technique is not directly applicable to the case of pure N=1 Yang-Mills, we point out that the same formula gives the correct result also for this case.Comment: 21 pages, AMS-LaTeX, v2: references added and typos correcte
    • …
    corecore